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Abstract--Glacier  flow is a form of gravity tectonics in thin sheets, characterized by the development of large 
strains, foliation and folds. Strain is difficult to measure in ice, but numerical methods provide a good means of 
estimating cumulative strains. In simple terms, flow in an ice cap involves vertical flattening at the center with 
bottom-parallel shear increasing in intensity downwards and outwards. In steady state, cumulative strains will be 
plane if flow is two-dimensional, as in parts of many valley glaciers and some ice caps, and of flattening type if 
lateral extension occurs normal to the flow direction, as in many ice sheets. In both radial and plane flow, strain 
gradients will be large vertically and low horizontally outwards. Cumulative strain magnitude can be extremely 
large near the base and at the margin. Z is everywhere sub-vertical. 

If flow is unsteady, more complex strain patterns develop, even if changes in the flow field are slight. Over 
bedrock ridges, flow perturbations can lead locally to rotations greater than those of the quasi-simple shear acting 
near the base in steady state flow. This may cause the X-direction of the cumulative strain to rotate through the 
'shear plane'  in the neighborhood of the perturbation, in which case strain magnitudes subsequently diminish, 
leading to low or zero strains in plane flow, and to constrictional strains in radial flow. In the latter case, X lies 
horizontal and perpendicular to the flow direction, and we have local constrictional strain in an overall flattening 
field. The zones of perturbed strain tend to be associated with the inverted limbs of recumbent folds. 

Shear zones in rocks are expected to show similar patterns of strain perturbation. 

INTRODUCTION 

T H E  ANALOGY between flow in glaciers or ice sheets and 
tectonic flow in rocks has often been made (e.g. Weg- 
mann 1963, Ragan 1969, Hambrey 1977). Glacier flow is 
a kind of thin-skinned tectonics, driven by gravity, which 
may have its equivalent in rocks in certain kinds of nappe 
structure. Because the basal and lateral parts of ice caps 
and glaciers constitute shear zones, strain patterns and 
structural development there and in shear zones in rocks 
should be similar. Deformation in ice is by both brittle 
and ductile processes. Brittle behaviour by crevassing is 
common near the upper surface of a glacier, where flow 
is extensional. Flow is ductile elsewhere and involves 
basal glide, grain rotation and recrystallization. Very 
large strains may develop and characteristic structures 
appear, the most prominent of which are foliation and 
folds (Allen et al. 1960, Hambrey 1975, Hudleston 
1976a, 1977a, Hambrey & Mfiller 1978, Hooke & Hud- 
leston 1978). Rather similar structures, developed under 
similar kinematic conditions, are also found in salt 
glaciers (Talbot 1979). 

Knowledge of the nature of the strain that develops is 
important for understanding structures and, conversely, 
structures may provide useful information on strain. 
Good strain markers are hard to come by in ice, but 
bubble shape and orientation can be used in weakly 
deformed ice (Hudleston 1977b) and there is also the 
potential for using bubble distribution with methods 
such as those developed by Fry (1979). Perhaps the best 
approach for estimating strain in glaciers is by making 
use of measured or calculated velocity distributions 
(Milnes & Hambrey 1976, Hambrey & Milnes 1977, 

Hooke & Hudleston 1980), from which particle paths 
and cumulative strains may be computed numerically. 
Although the precise history of flow is never known for 
any glacier, geomorphological observations often pro- 
vide information on past configurations (e.g. Hudleston 
& Hooke 1980) which in turn provide control on past 
flow fields. Even with quite large changes in external 
configuration, due to glacier advance or retreat, the 
basic internal pattern of velocity and stain rate will not 
change greatly. However, small local changes in the 
internal velocity field caused by modest changes in exter- 
nal glacier configuration may eventually lead to large 
local variations in cumulative strain. It is the purpose of 
this paper to study such variations by extending earlier 
work to include the cases in which (i) flow is non-planar 
and (ii) perturbations from the steady state occur. The 
strain variations and structures that result are also likely 
to be found in shear zones in rocks, in which unsteadiness 
of flow has occurred. 

NUMERICAL MODEL FOR STEADY-STATE 
PLANE FLOW 

The simplest case to deal with is that in which flow is 
two-dimensional and steady. There are a number of 
instances of glacial flow approximating this state (e.g. 
Budd 1969, Hudleston 1976a). The principle of the 
method by which particle paths and cumulative strains 
are found is given in detail in an earlier publication 
(Hudleston & Hooke 1980) and will not be repeated 
here. The results from this earlier work, with application 
to part of the Barnes Ice Cap in Baffin Island, Canada, 
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Fig. 1. Steady state flow and deformation in a section of the Barnes Ice Cap (after Hudleston & Hooke 1980). (a) Particle 
paths and isochrons, with contours in years. (b) Magnitudes and true orientations (no vertical exaggeration) of maximum 
principal strain rate ~1. (c) Contours of simple shear index. (d) Bars showing true orientation of the X-direction of 

cumulative (finite) strain. (e) Contours of cumulative strain magnitude. (f) Contours of simple shear index. 

arc summarized here in order to provide continuity and 
comparison. Here, steady state means the velocity field 
and glacier configuration remain unchanged with time. 
Long-term steady state can sometimes be assumed, and 
the problem of finding a satisfactory steady state velocity 
field has been discussed earlier for a section of the 
Barnes Ice Cap (Hudleston & Hooke 1980). In that case, 
horizontal velocities were derived from surface measure- 
ments, borehole data, use of the flow law, and know- 
ledge of the fact that the ice is frozen to the bedrock. 
Vertical velocities were then found from mass balance 
considerations. 

For the purpose of computation, the velocity field, 
once selected (see Hudleston & Hooke 1980), is rep- 
resented by its values at the nodes of a triangular grid of 
elements. The velocity at any point can then be found by 
linear interpolation and, by using short increments of 
displacement, individual particles of ice can be followed 
through the glacier to approximate smooth particle paths 
and flow lines (Fig. la). Strain rate is constant within 
each triangular element. Incremental strains can readily 
be found from the deformation matrix associated with 
each increment of displacement, and cumulative strains 
found by multiplying together the incremental deforma- 
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Fig. 2. Same section as in Fig. 1, with steady-state flow, modified to become radial. (a) Selected particle path and numbered 
particles used in tracing perturbation. Vertical wavy lines show limits of Fig. 6 (light) and Fig. 7 (heavy). (b) Contours of 
shape index for strain rate (/,), (see text). (c) Contour of shape index for cumulative strain (v), (see text). 

tion matrices (Hudleston & Hooke 1980). The axes of 
the cumulative strain ellipsoid are denoted by X, Y and 
Z (with X >t Y t> Z).  

Results 

The results for the Barnes Ice Cap are shown in Fig. 1. 
The pattern of flow and strain rate is clear; it is almost 
that expected for simple shear near the base of the 
glacier and pure shear at the surface and along the center 
line (Fig. lc). The index of simple shear is defined by 
/ss = 2tb/(~l-~3), where tb is the rotational component of 
the deformation rate tensor and ~t and ~3 are maximum 
and minimum principal strain rates (Hudleston & Hooke 
1980). lss has a value of 1.0 for simple shear and 0.0 for 
pure shear. Cumulative strain is characterized by X 
being subhorizontal near the base and center, and plung- 
ing gently up-glacier elsewhere. In much of the ice, X 
makes a very small angle with the particle paths and also 
with the isochrons, which are manifest as primary stratifi- 
cation (Figs. la  & d). Strain gradients are very high 
vertically and low horizontally (Fig. le): very large 
strains are encountered at the base. Strain magnitude is 
measured by 50, the natural octahedral unit shear, 
defined by: 

5'o = 2/3[(~1-~2) 2+ (~2- -~3)  2 Jr" (~3-~i)2] 1/2 

where ~ = In  (1 + el), etc. and (1 + el) is a principal 
semi-axis of the strain ellipsoid. The index of simple 
shear, lcs, is found by dividing the actual rotational 
component of the deformation by the rotation that 
would result from a simple shear of magnitude ~/o. lcs also 
has a value of 1.0 for simple shear and 0.0 for pure shear 
(Fig. lf).  

MODIFICATION FOR RADIAL FLOW 

Many ice caps, such as the Barnes, are roughly circular 
in overall plan and therefore involve divergent flow, 
such that there is horizontal extension perpendicular to 
the flow lines as seen in map view. To demonstrate the 
effect of such flow on the strain pattern it is convenient 
to take the case of perfect radial flow. This is done in the 
following artificial way, using the same glacier configura- 
tion as for plane flow (Fig. 1). The longitudinal strain 
rate, ~zi, perpendicular to the 'flow plane', xy (the plane 
of Fig. i with x in the direction of flow measured from the 
center and y vertical), at any point i is given by ~zi -- ui/xi, 
where u is the horizontal component of velocity. The 
x-component of strain rate, ~xi, is derived directly from 
the original horizontal velocities and eyi is found from 
constancy of volume (~x + ey + ~z = 0). Vertical vel- 
ocities are found by integration of ~yi from the base up. 

Results 

The pattern of flow lines and particle paths looks very 
similar to that for plane flow: one selected particle path 
is shown in Fig. 2(a). The magnitudes and orientations 
of principal strain rates and cumulative strains in the 
plane of flow are also very similar to those found in plane 
flow and are not shown. A significant difference occurs, 
however, in the symmetry or shape of the strain. Strains 
and strain rates are all of the flattening type, but the 
degree of flattening varies with position in the glacier. 
To illustrate this Lode's number, ~,, is used 

2~2--~i--~ 3 / / - -  
El--~3 

This has a value of +1.0 for pure flattening (oblate 
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ellipsoid), - 1.0 for pure constriction (prolate ellipsoid), 
and 0.0 for plane strain. A similar quantity, /~, can be 
defined for strain rate, replacing ~1 by ~1, etc. 

Reference to Fig. 2 shows that strain rate is closest to 
plane strain (and simple shear) near the base of the 
glacier where ~ and E~. are large in relation to ez- 
Cumulative strain is strongly of flattening type through- 
out the glacier, but does become less oblate away from 
the center. It should be noted that plots of shape index 
for plane flow would show no contours--the indices v 
and/~ have values of zero everywhere. 

/ /  aid particle path 
- "  new particle path .<~ bedrock 

PERTURBATION OF F L O W - -  
GENERAL CONSIDERATIONS 

Fig. 3. (a) Schematic steady-state particle paths over bedrock hill, just 
before and just after 'instantaneous' perturbation. (b) Old particle 

path transformed into fold by flow on new particle path. 

Steady-state flow for any length of time in a glacier is 
unlikely, and most glaciers have undergone significant 
fluctuations since the end of the Pleistocene. Under 
steady-state flow, sedimentary layering and foliation 
form a simple pattern, and passive folding of these 
cannot occur (excluding broad scale, open folding 
associated with nonlinear displacement gradients 
towards the sides and base of glaciers and with the 
curvature of particle paths, Hudleston 1976a, Hudleston 
& Hooke 1980) . Perturbations of flow associated with 
changes in glacier configuration are required to allow 
small-scale passive folds to form, and such folds appear 
to be common in virtually all glaciers. The perturbations 
that give rise to folds must also disturb the strain field, 
and this is the main concern here. 

In order to examine the principles of strain perturba- 
tion, it is most convenient to use the analogy of simple 
shear, which is good for the basal parts of the glacier. 
The shear planes will be sub-parallel to the bedrock 
surface. A change with time in ice thickness or surface 
slope, associated with advance or retreat of the glacier, 
changes the boundary conditions for the flow, which in 
turn causes a slight change of the velocity field within the 
ice. If the changed conditions remain fixed, a new steady 
state exists, with a new set of particle paths and flow lines 
oblique to the old (Fig. 3a). Over hills or valleys in the 
bedrock, the change in flow regime may cause the old 
particle paths to be transformed into subsimilar recum- 
bent folds (Fig. 3, Hudleston 1977a). If sedimentary 
layering or foliation is parallel or nearly parallel to the 
old particle paths, the folds will have a physical manifes- 
tation. The sense of asymmetry is dictated by the sense 
of shear and the fact that the layering before perturba- 
tion is subparallel with the shear planes (see also Cob- 
bold & Quinquis 1980). 

In an earlier study (Hudleston 1976b), the strain that 
accumulated after the perturbation was examined. In a 
small area affected by folding, this strain was quasi- 
homogeneous, with X Y  parallel to the axial surfaces of 
the folds. This reflects the fact that the strain developed 
under a new steady state forms the same simple pattern 
as that developed under an old. The pattern of total 
strain, which has not been considered previously, is not 
so simple. 

Under steady flow near the base of a glacier, the 
cumulative strain ellipse progressively becomes more 
elliptical and makes smaller angles with the shear plane. 
In simple shear, each value of shear strain, Y, is 
associated with a strain ellipse of unique ratio and 
orientation (e.g. Ramsay 1980, fig. 8). After a perturba- 
tion of the kind sketched in Fig. 3, the strain ellipse will 
make a different angle with the new shear plane. This 
angle may be greater or less than the original, or even 
negative. A negative angle means, in effect, that the 
strain ellipse has rotated through the shear plane (with 
'new' and 'old' shear planes taken as a single reference 
plane). In all the cases which lead to passive folding 
(Hudleston 1976a), the angle of the strain ellipse (X) to 
the shear plane is reduced and may become negative. 

If the angle, 0, between strain ellipse and shear plane 
is positive after the perturbation, the cumulative strain 
will continue to increase in magnitude and X make 
smaller angles with the shear plane, but in a way not 
directly given by the equations of simple shear. Further 
deformation can be considered as the superposition of a 
simple shear on a pre-existing strain of constant axial 
ratio, whose orientation with respect to the shear plane 
is given by the degree of perturbation. Standard equa- 
tions for successive deformations (e.g. Elliott 1972) can 
be used for the calculations. 

Using the analogy of ideal simple shear, the history of 
deformation following a perturbation can be examined 
in the following way. If 0 is negative, deformation after 
perturbation can follow one of three paths. In the first 
case, a special one, 0 is such as to make the ellipse a 
reciprocal strain ellipse for continued simple shear on 
the new shear planes. Let this angle be 0c. Further flow 
will cause the ellipse to revert to a circle or isotropic 
point (Brun, this issue), after which the strain will 
increase again with positive 0 (Fig. 4a). On a natural- 
strain plot, the strain path is from A to B and back 
towards, and eventually beyond, A (Fig. 4a). 

If 0 < 0 c, continued simple shear will cause both the 
magnitude of the cumulative strain and 0 to decrease. A 
minimum magnitude is reached when 0 = 0 ;  sub- 
sequently strain magnitude and orientation increase in a 
way that mirrors the path of the decrease. On the strain 
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plot, the path is from A to B and back to A and beyond 
(Fig. 4b). 

If 0 > 0r, a similar sequence of changes occurs, except 
that 0 increases after the perturbation and the minimum 
strain occurs when 0 = 90 ° (Fig. 4c). 

Now, if the starting state is not true simple shear, but 
involves a constant strain in the third dimension, the 
pattern of strain in the xy-plane (perpendicular to the 
shear plane) remains the same as for plane strain for the 
three cases presented. However ,  the symmetry and 
magnitudes of the three-dimensional strains are quite 
different. With glaciers in mind, let us take the case 
where (1 + e2) = 1.5. The ratio (1 + ei)/(1 + e3) remains 
the same as for plane strain, but the absolute values of el 
and e3 change to maintain constant volume. In the case 
where 0 = 0 c, the initial state lies in the flattening field at 
A'  on the strain plot (Fig. 4a). After  the perturbation,  as 
the strain decreases in magnitude, the strain path passes 
through a state of pure flattening (v = 1.0) on the way to 
a state of pure constriction (u = - 1.0) at B ' ,  at the point 
of minimum strain (Fig. 4a). Further  deformation 
retraces the path towards A' .  

In the other  two cases, similar strain paths are fol- 
lowed (Figs. 4b & c) but pure constriction is not reached. 
The degree to which this is approached,  and whether or 
not the constrictional field is even entered,  depends on 
the difference between 0 and 0r: the smaller the differ- 
ence, the closer the approach to pure constriction. 

EXAMPLE OF PERTURBATION OF 
GLACIAL FLOW 

The kind of perturbation of cumulative strain 
described above is expected to occur in glaciers. The 
effect on the total strain field of a perturbation of plane 
flow has not been considered previously. Many conse- 
quences of perturbation are identical for plane flow and 
radial flow. The differences between the two cases will 
be discussed after the slightly more complex and interest- 
ing case of radial flow has been considered. 

r*- 7,_ 

* ~ ' - h i l l  * 

0 5 0 0  m Veloci ty  scale 

= 5 re ly  

f 

200  m 

0 

Fig. 5. Velocity vectors before (solid) and after (dashed) perturbation 
used in strain modelling, at nodes of a grid of elements in the vicinity 
of the hill shown in Fig. 2. Away from the three central columns of 
nodes, there is no change in velocity. The complete grid is almost the 

same as that illustrated in Hudleston & Hooke (1980 fig. 2B). 

With a knowledge of the effects of changing ice thick- 
ness or surface slope gained from earlier work (Hudles- 
ton 1976a), the following simple procedure was used to 
apply a local arbitrary perturbation to the pattern of 
radial flow described above. This simulates the effect of 
ice advance or retreat,  without having to change the 
configuration of the glacier and the whole velocity field, 
and so simplifies the computations. 

An 'instantaneous' modification of the vertical veloc- 
ity was made at a few selected nodes above the hill 
indicated in Fig. 2. This hill, present on the particular 
cross-section of the Barnes Ice Cap under study, was 
chosen as a matter  of convenience for demonstrating the 
principle: restriction to a single hill and perturbation 
emphasizes the nature of the phenomenon.  Upward 
perturbations were added to the velocities at nodes 
immediately above the hill crest, and lesser perturba- 
tions were added at the nodes in columns either side. 
The perturbations were made to die out exponentially 
upwards in each column of nodes (Fig. 5). The velocities 
in all other nodes were left unchanged. This type of 
perturbation simulates the effects of a glacial retreat (see 
Hudleston 1976a, fig. 7a). Once applied, the perturbed 
velocities are held fixed, thus making an instantaneous 
change from an old to a new steady state. The mag- 
nitudes and nature of the per turbed velocities were 
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Basic Flow 

b 

d 

Fig. 6. Strain paths for radial flow: (a) for points lying on the particle path of Fig. 2(a) or for particles following this path in 
steady state and (b)-(d) for particles 1,2 and 3 after perturbation. Circles and crosses correspond to positions of particles 

345 and 530 years, respectively, after perturbation. 

varied, and the effects on the subsequent deformation 
pattern studied. One particular model was chosen that 
illustrates nicely the case in which the pre-existing strain 
ellipses are rotated through the new shear plane, and 
consequent large modifications to the cumulative strain 
result. 

With the velocity field known, before and after pertur- 
bation, the computation of displacement and strain 
comes from the application of the method referred to 
above and described in detail in Hudleston & Hooke 
(1980). The only new feature is the addition of a strain in 
the third dimension, found for each increment by multi- 
plying strain rate by the increment of time. Before the 
perturbation is applied, we have the pattern of flow and 
strain as shown in Fig. 2. Points 1,2 and 3 all lie on the 
same particle path (Fig. 2a). The states of strain at these 
points are represented by dots in Fig. 6(a). The heavy 
line passing through these dots is the strain path, fol- 
lowed by all particles of ice on this particular path (in the 
absence of perturbations). The end of the strain path 
(Fig. 6a) corresponds to the point where ablation occurs 
(Fig. 2a). 

When the velocities over the hill (below points 1,2 and 
3) are perturbed, each particle is displaced onto a new 
path, different for each particle. The new particle paths, 
not shown in Fig. 2, would not individually appear very 
different from the one shown. The situation at two 
selected stages after the perturbation is shown in Figs. 7 
and 8. The old path containing particles 1, 2 and 3 has 
become deformed into a recumbent fold, which would 
be visible as such if a layering or foliation were parallel 

or nearly parallel to the old particle paths (e.g. Hudles- 
ton 1976a, fig. 2). The transformed positions of old 
particle paths above and below the main one (Figs. 7 and 
8) show how the fold dies out upwards and grows 
downwards toward the hill above which the fold was 
seeded. Not shown is the eventual dying out of the fold 
near the hill. 

The strain history for a particle initially downstream 
from the hill is no different from that for the unperturbed 
flow (since such particles underwent no perturbation). 
The strain history for particles initially upstream from 
the hill is only modestly affected by the perturbation. 
For example, particle 1 (Figs. 2,7 and 8) is carried over 
the hill on a new path higher than the old, but it follows 
a strain path (Fig. 6b) not greatly different from its 
unperturbed equivalent (Fig. 6a). The situation for par- 
ticles 2 and 3, which lay directly above the hill at the time 
of perturbation, is quite different. The strain history for 
particle 2 is similar to that shown in Fig. 4(c), passing 
through a state of pure flattening to almost pure constric- 
tion (Fig. 8) and back again to the flattening field before 
ablation. Particle 3 undergoes a similar history, but is 
‘out of phase’ with particle 2: it reaches its minimum 
strain in the constrictional field earlier (Fig. 7), at a time 
when particle 2 is still well within the flattening field 
(V = 0.7). Also, particle 3 returns to a state of pure 
flattening once again before ablation. 

The strain paths of the glacial model (Fig. 6) differ 
from those of the ideal model (Fig. 4) in two respects, 
both due to the flow in the glacier departing from simple 
shear. First, after the excursion into the constrictional 
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Fig. 7. Symmetry, magnitude, and true orientation of cumulative strain, 345 years after perturbation. 
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Fig. 8. As Fig. 6,530 years after perturbation. The black object embedded in the bedrock helps show the relative position 
of this section with respect to the sections of Figs. 2 and 7. 

field, the return to flattening in the glacial model is not 
exactly by the same path. This largely results from the 
strain in the third dimension, which is unaffected by the 
perturbation and increases monotonically with outward 
flow: the strain magnitudes on returning to the flattening 
field are therefore greater than those on departure from 
it. Second, the hook found at the end of the strain paths 
of the glacial model is not present in those of the ideal 
models• This is due to the longitudinal compressive 
strain existing in the distal parts of the glacier, causing 
strain magnitude to be diminished and the hook to 
appear. 

It is apparent that the cumulative strain of any particle 
of ice has a relatively brief excursion away from the 
flattening field, and that after this excursion it returns to 
a path not very different from the one it was originally 

following. The pattern of strain perturbation, however, 
exists for much longer than the time spent by any 
individual particle of ice on its excursion, since the 
excursion of each is offset in time from that of its 
neighbours: different particles reach positions of 
maximum excursion and minimum strain at different 
times• 

The detailed pattern of strain perturbation depends 
on the nature of the velocity perturbation and cannot be 
accurately or realistically determined from the rather 
crude modelling done here. It does seem, however, that 
the perturbed zone, of low strain magnitude and depar- 
ture from flattening symmetry, will have a more or less 
lensoid form (Figs• 7 and 8). Principal strain orientations 
in the perturbed zone will often be at high angles to the 
horizontal, due to the ellipse rotating in the manner 
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illustrated in Fig. 4; strain trajectories may in fact trace 
out folded forms much like the old particle paths. 

If, instead of radial flow, the simpler case of plane flow 
were taken, the appearance of the perturbed strain field 
in cross-section would be almost identical to that shown 
in Figs. 7 and 8. Strain magnitudes would show a similar 
reduction in the overturned limb of the 'folded particle 
paths', but strain symmetry, as described and illustrated 
above for idealized simple shear (Fig. 4), would not, of 
course, vary. It would be everywhere given by v = 0.0. 

DISCUSSION AND CONCLUSIONS 

The most interesting result of this study is that it is 
possible, by perturbing flow which is basically simple 
shear, to produce local zones of low strain in regions of 
overall high strain. Moreover, if an element of extension 
in the third dimension is added, it is possible to produce 
zones of constrictional strain in an otherwise flattening 
field. In this case the axis of constriction, X, lies parallel 
to the shear plane and perpendicular to the shear direc- 
tion. 

These types of strain perturbation predicted for 
glaciers are probably important for rocks too, in particu- 
lar in shear zones, where there are various ways of 
introducing perturbations into the flow (Cobbold & 
Quinquis 1980). The juxtaposition of zones of flattening 
and constrictional strain in rocks has been noted by 
several authors (e.g. Hossack 1968, Clifford 1972, Hud- 
leston 1976b), and some of these juxtapositions may 
result from the kind of process described here. It should 
be noted, though, that the X-direction of strain in zones 
(themselves rod-shaped) of local constriction described 
by Hossack lies in the presumed direction of movement 
in a thrust zone, not perpendicular to it as would be 
expected by the process described here. Another way of 
producing strain variations in shear zones or thrust belts 
has been suggested by Coward & Potts (this issue), who 
consider deformation near the terminations or edges of 
propagating shear zones or thrusts. Local flattening or 
constrictional strains can be predicted in these locations. 
Other examples of juxtaposition of constrictional and 
flattening fabrics, produced by superimposed deforma- 
tion, have been described by Goldstein (1980) and 
Duncan (1982). 

The relationship of the zone of anomalous strain to 
folding is of interest. The folds produced in pre-existing 
layering or foliation (parallel or sub-parallel to the old 
particle paths) are closely related in origin and in space 
to the perturbations of total strain. We see that the 
lensoid zone of low strain lies in or adjacent to the hinges 
and overturned limb of such a fold (Figs. 7 and 8). This 
predicted relationship should provide a useful means of 
identifying this phenomenon in rocks. Many recumbent 
folds, such as the Morcles nappe (Ramsay 1981, fig. 5), 
clearly develop by localized shear within the inverted 
limb. They, thus, represent quite a different phenome- 
non, in which the existence of the folds is largely due to 
the localization of strain, and strain magnitudes are 

greatest in the inverted limb. In the process described in 
this paper, the strain developed after the perturbation of 
flow is fairly homogeneous across the folds (Hudleston 
1977a), and no localization of this strain occurs. It is not 
clear if the folds developed in salt glaciers are associated 
with similar patterns of strain. It is unlikely, perhaps, 
since the incremental strains, as indicated by halite 
porphyroclasts, appear to vary across the fold (Talbot 
1979, fig. 6), rather than stay more or less constant. 

Further complications may arise if, as seems likely, 
the disturbance that causes the strain perturbation and 
folds is not two-dimensional, as assumed everywhere 
above, but is more complex. A conical hill at the base of 
the glacier would produce a point disturbance and a 
sheath fold would result from the subsequent flow. 1 
have seen examples of such folds in glaciers and they are 
common in shear zones in rocks (e.g. Minnigh 1979, 
Cobbold & Quinquis 1980). The pattern of cumulative 
strain following such a perturbation would be quite 
complicated, even if the overall strain field is one of 
simple shear alone. The zone of strain disturbance will 
be limited in the third dimension, and may be cigar 
shaped itself. 

Folds resulting from perturbed flow are very common 
in glaciers and also common in rocks such as mylonites in 
which large shear strains have developed. If the folds 
develop in a passive manner, strain markers that record 
the whole deformation should indicate the kind of strain 
variations described in this paper. Such strain variations 
may well prove to be common. 
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